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bstract

It is required that shelf life be determined based on the lower limit of the confidence interval of the estimate from the stability tests. Simulations
ndicate that a 1-year prediction of shelf life will have approximately 1 month of error. However, this is product specific and is related to the
ncertainty of measurement and experimental design. Factors associated with product and experimental design, such as degradation rate, number
f time points, implementing a full versus a reduced design, etc., can significantly affect the error of shelf life. Uncertainty in measurement is
ositively correlated to the amount of error through the manufacturing lot-to-lot variability, precision of the analytical method and calibrator.

xperimental design can control random variability and actually can reduce error by increasing number of lots and replicates in stability tests.
he decision on the number of lots and replicates will be a balancing act between the uncertainty of the measurement, design and other practical
onsiderations.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Shelf life of a product that is estimated from the stability tests
as a certain degree of error. To minimize any risk associated
ith this estimation it is required that shelf life be determined as

he earliest time at which the 95% confidence limit for the mean
esponse intersects the proposed criterion [1,2]. For products that
egrade with time (i.e. the characteristic of interest decreases
s time increases) shelf life should be reported as the lower
ne-sided 95% confidence limit of the estimate [3]. While cal-
ulations of confidence intervals are addressed in several studies
3,4], it is common in biopharmaceutical practice to consider that
he measured characteristic is normally distributed and to use the
ercentiles from normal or student distribution to calculate con-
dence limits for the estimates. Meeker and Escobar [4] used
imulation to obtain parametric bootstrap confidence limits of
he time-to-failure distribution.

The difference between the point estimate of shelf life and

ts lower confidence limits depends on the width of the con-
dence interval, which is positively related to the amount of
rror. For relatively wide intervals, the determination of shelf
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ife may be conservative and sometimes practically meaningless.
ptimum allocation in an experiment will reduce the variability

ssociated with error. FDA [1,5] has outlined some fundamental
esign considerations. Designs based on different optimality cri-
eria are given in Lin and Chen [5], Boulanger and Escobar [6],
nd Hedayat et al. [7] while Zhang and Meeker [8] described a
ayesian approach that uses the estimation precision at spec-

fied use conditions to find optimum test plans. Appropriate
odeling [9–11] of random effects like batch-to-batch differ-

nces, will also improve the accuracy for estimating shelf life.
he design approach is relatively efficient for reducing error but

here are certain practical limitations on the numbers of test to
e conducted, time intervals, etc.

Other factors affecting the amount of error are the precision
f measurement, calibration of methods or measuring devices,
ample handling, manufacturing variability, etc. The cumula-
ive variability of these factors is recognized as uncertainty of

easurement and is defined in ISO documentations [12] as, ‘a
arameter associated with the results of a measurement that char-
cterizes the dispersion of the value that could reasonably be
ttributed to the measurand.’ Furthermore, uncertainty is inter-

elated to another meteorological concept, traceability, which
elates the measured result to a recognized reference through
n unbroken chain of calibrations or comparisons. Each step of
his process involves a measurement procedure that contributes

mailto:Robert.Magari@Coulter.com
dx.doi.org/10.1016/j.jpba.2007.05.003
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ufacturing variability of vendors is important in determining
the amount of uncertainty associated with a single measure-
ment when the same analytical procedure and calibrator is used.
The choice of vendors cannot be based solely on the amount of

Table 1
Uncertainties of different sources

Source CV (%) S.D. ±Range

Lot-to-lot

1.0 0.01 0.03
2.0 0.02 0.05
3.0 0.03 0.08
4.0 0.04 0.10
72 R.T. Magari / Journal of Pharmaceutical

ome uncertainty. Cumulative combinations of these individual
ncertainties represent the uncertainty of measurement that pro-
ides information about the closeness of the result to the true
alue, as well as a quantitative estimate of the quality of a result
enerated from an analytical method or measuring device. There
re several article published on this subject [13–17], but we are
ot aware of any publication that addresses error in stability
tudies from the perspective of the uncertainty of measurement.
hus, the purpose of this paper is to show how the random vari-
bility in the measurement is related to the amount of error of
stimated shelf life and to provide information that would assist
n designing stability tests and predict stability within certain
imits of error.

Paper is partitioned into three main sections, uncertainty
f measurement, degradation model, and experimental design.
elationships between these sections are established by con-

idering a hypothetical product X, with certain performance
haracteristics, that is undergoing stability testing. Degrada-
ion data for product X are simulated for different experimental
esign scenarios and statistically analyzed to estimate shelf life.

. Uncertainty of measurement

.1. Model

There are three sources that can contribute to total uncer-
ainty. First, the uncertainty of the calibrator is the direct link
o the traceability chain. This value is usually provided by
he manufacturer of the calibrator. The second contributor of
ncertainty is the imprecision of the analytical method. This
efers to repeatability as well as reproducibility as described in
he ISO literature. For a given calibration cycle, the calibrator
etermines the average result, while the degree of imprecision
etermines the width of the scatter around this average. Sample
s the third source of uncertainty. The constitution and nature
f sample may vary from raw material to biological specimen,
nd itemizing the sources of this uncertainty can be intricate.
ample uncertainty may includes manufacturing variability of

he material, pre-analytical effects, and losses in time caused by
etabolism, simple chemical reaction or denaturation, sample

on-homogeneity, storage, stability, other specific conditions,
tc. Manufacturing variability of the material represented in the
ample is a ‘true’ random component of sample uncertainty.
he contribution of the other elements may be excluded from

he uncertainty by a careful definition of the measuring system
n space and time. For example, if we are measuring a biolog-
cal sample that drifts in time, we can remove the amount of
rift from the sample uncertainty by defining the time of the
easurement.
Measurement result from an analytical procedure can be

xpressed as:

= C + P + S (1)
here M is the measurement, C the calibrator, P the analytical
rocedure, and S is the sample effect. We assume that all effects
re independent from each other and normally distributed. When

P

C
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here is no need to calibrate, C has mean zero and standard devi-
tion, σ2

c that represents the uncertainty of the calibrator. c �= 0 if
alibration is needed. This will only shift the average up/down
ut will not affect the uncertainty. The result from an analyt-
cal procedure, P, is a function of the sample being measured
nd the precision of the procedure, P ∼ N(μP, σP), where μP is
he mean result of the sample and σP is the imprecision of the
nalytical procedure. The average of sample effects, S is zero
or samples coming from a stable and in control manufactur-
ng process, as well as stored and handled under recommended
onditions. Thus, S ∼ N(0, σS), where σS is the manufacturing
ariability, mainly represented as lot-to-lot variation. Since all
ndividual effects are independent and normally distributed, M
ill be normally distributed as well, with mean, μM, and σM

tandard deviation of uncertainty. Furthermore, μM = μP and
M is calculated from its components as:

M =
√

σ2
c + σ2

S + σ2
P

ncertainty can also be expressed as ±range, 3σM or as coeffi-
ient of variation:

V (%) = σM

X̄
× 100

.2. Performance data

Let us consider a hypothetical product X with an average
esult of one for the characteristic that we are interested (μM = 1).
et also assume that this product is available from five different
endors that have manufacturing (lot-to-lot) variability from 1%
o 5%, with 1% being the best process and 5% the worse pro-
ess. These values are detailed in Table 1. We are going to use
certain analytical procedure to measure the characteristic of

nterest. This procedure has an imprecision of 2%. We also ran a
ommercial calibrator that has an uncertainty of 1%. Analytical
rocedure did not need any recalibration.

Model (1) is used to calculate the uncertainty of measure-
ent presented as CV% in Table 2 or as standard deviation

nd ranges in Table 3. Lot-to-lot manufacturing variability is
he only contributor to sample uncertainty. The other causes
f sample uncertainty are considered to be negligible. Man-
5.0 0.05 0.13

recision 2.0 0.02 0.05

alibration 1.0 0.01 0.03
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Table 2
Coefficient of variations of uncertainties

Lot-to-lot (%) Precision (%) Calibration (%) Measurement (%)

1.0 2.0 1.0 2.4
2.0 2.0 1.0 3.0
3.0 2.0 1.0 3.7
4
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Table 4
Error of shelf life for different uncertainty of measurement and number of lots
in real time stability test

Uncertainty of measurement (%) Number of lots

2 3 4 5 6

2.4 3.2% 2.7% 2.4% 2.1% 1.9%
3.0 3.9% 3.4% 3.0% 2.7% 2.5%
3.7 4.7% 4.2% 3.8% 3.5% 3.2%
4
5

o
f
t
c
m
t
l

4

4

a
l
r
T
1
A
D
s
5
u
a

t
a
a
t
e
above 0.94. Regression slopes range from 1.16 for two lots to
0.97 for six lots experiments indicating that the increase of error
.0 2.0 1.0 4.6

.0 2.0 1.0 5.5

ncertainty but a vendor should not be selected if the range of
ncertainty of measurement is greater than a tolerable range for
hat characteristic.

. Degradation model

We consider product X degrades in time according to a first-
rder degradation reaction [9]. This pattern is modeled as:

= α exp(−δt) + ε (2)

here M is the measured result, α the result at time zero, δ the
egradation rate, t the time (t > 0), and ε is the experimental
rror. Error is a pooled estimate of residuals at each time points
onsidering that variances are homogenous. Using Arrhenius
elationship, the degradation of the product at elevated temper-
tures will be accelerated by the following acceleration factor:

= exp

[
Ea

0.00199

(
1

Ts
− 1

Te

)]
(3)

here Ts, Te are storage and elevated temperatures, respectively
nd Ea is the activation energy (kcal mol−1). Degradation at stor-
ge temperature as a function of elevated temperatures can be
xpressed as:

= α exp(−δsλt) + ε (4)

s is the degradation rate at storage temperature. At time zero
M = α, while after 100 days (t = 100), μM = α exp(−δsλ100). A
aximum likelihood method can be used to estimate the param-

ters of the models. The standard errors of the estimates are
omputed based on the inverse of the Hessian matrix (the matrix
f second derivatives). Shelf life of the product is calculated as:

Stab = log(Crit) − log(α̂)

δ̂
(5)
s

here Crit is a critical level where the essential performance
haracteristics of the product are within the specification. We
re using the value of Crit = 0.9 in this paper. Standard error

able 3
tandard deviation and range of uncertainty of measurement

V (%) S.D. ±Range Lower Upper

.4 0.0245 0.06 0.94 1.06

.0 0.0300 0.08 0.92 1.08

.7 0.0374 0.10 0.90 1.10

.6 0.0458 0.12 0.88 1.12

.5 0.0548 0.14 0.86 1.14

d
r

T
E
r

N

2
3
4
5

.6 5.8% 5.2% 4.8% 4.4% 4.1%

.5 6.8% 6.3% 5.7% 5.3% 4.9%

f shelf life is actually the standard deviation of the non-liner
unction (5), and it is consequently dependent on the errors of
he estimates of α and δ. There is no closed form equation to
alculate the standard deviation of the above function. Delta
ethod [18] based on the Taylor series of the first derivatives of

he function can be used to obtain the approximate error of shelf
ife.

. Experimental design

.1. Real time stability test

Product X is stored at normal storage temperature (25 ◦C)
nd monitored for a period of time until it fails. One to six
ots are tested at 22 different time points. At each time point a
andom sample from each lot is tested in two to five replicates.
ime points are: 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 130,
60, 200, 250, 300, 350, 400, 450, 500, 550, and 600 days.
s it is mentioned before the average of product X is μM = 1.
ata for combinations of lots, replicates and time points are

imulated using a lot-to-lot variability of 1%, 2%, 3%, 4%, and
%, imprecision of 2% and calibrator uncertainty of 1%. We
sed SAS® 9.1.3 [19] to analyze the data based on model (2)
nd calculating shelf life and its error as described in (5).

Errors of estimated shelf life are shown in Tables 4 and 5 in
erms of coefficient of variations. Errors presented in Table 4
re calculated for three replicates while calculations in Table 5
re based on 3.7% uncertainty of measurement. All the correla-
ion coefficients between the uncertainty of measurements and
rror of shelf life for all number of lots presented in Table 4 are
ue to uncertainty can be controlled by testing more lots. The
elationship between the uncertainty of measurements, number

able 5
rror of shelf life for combination of different number of replicates and lots in

eal time stability test

umber of replicates Number of lots

1 2 3 4 5 6

5.6% 5.5% 5.0% 4.5% 4.1% 3.8%
5.3% 4.7% 4.2% 3.8% 3.5% 3.2%
4.9% 4.2% 3.8% 3.4% 3.1% 2.9%
4.5% 3.8% 3.4% 3.1% 2.8% 2.6%
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Table 6
Error of shelf life for combination of different number of replicates and lots in
accelerated stability test

Number of replicates Number of lots

1 2 3

2 5.7% 5.5% 4.8%
3
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ig. 1. Error of shelf life in real time stability tests as a function of uncertainty
f measurements and number of lots.

f lots, and the number of replicates is also shown graphically in
igs. 1 and 2. There is a curvature associated with the increase
n the number of lots and replicates in figures. However, for the
evels of uncertainties that we selected, there is no evidence on
he formation of a plateau indicating that further increase will
ot reduce error. In real time stability tests with three replicates
nd 3.7% uncertainty of measurement, the error of shelf life
ill be reduced by 0.6% when testing two lots instead of one

Table 5). Error of shelf life will be reduced by 0.5% when the
umber of lots is three, 0.4% when testing four lots and it is
educed by 0.3% for consecutive increases up to six lots. ICH
2] recommends using at least three primary batches (lots) for
tability studies. Results in Tables 4 and 5 support the fact that
sing three lots would significantly reduce error for estimating
helf life in comparison to one lot. However, there is no evidence
o conclude that increasing the number of lots beyond 6 will not
educe error.

Let assume that it is required that product X has a shelf life
f 365 days. To determine that this requirement is valid, product
will be subjected to real time stability by testing three lots

nd three randomly selected replicates for each lot. Because of
manufacturing variability of 3%, imprecision of the analytical
ethod that measures the characteristic of 2%, and 1% uncer-

ainty of the calibrator, the measured results for product X will
ave an uncertainty of 3.7%. This converts to a range of ±0.1
nits. Consequently, it is expected that a measured result to be in
he range of 0.9–1.1 units at time zero, but as time progresses this

ange will shift downwards because of the degradation. Estimat-
ng shelf life involves the process of changing from the original
nits of the characteristic to time units like hours, days, months,
tc. This is accomplished by models (2) and (5). Actual simula-

ig. 2. Error of shelf life for different replicates and lots in real time stability
ests.
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F
t

5.0% 4.7% 4.1%
4.4% 4.2% 3.6%

ion for product X indicated that the estimated shelf life has an
rror of 4.2% (Table 5). This converts to a range of ±39.5 days,
ndicating that product X should perform within specification for
n estimated 365 + 39.5 = 404.5 days in real time stability test to
eet the 1 year requirement.

.2. Accelerated stability test

Product X is stored at three elevated temperatures (35 ◦C,
5 ◦C, and 55 ◦C) in accelerated stability test and monitored
ntil it fails. One to three lots are tested at each temperature at
ifferent time points, where a random sample from each lot is
ested in two to four replicates. Data for the combinations of
ots, replicates and time points are simulated using a lot-to-lot
ariability of 3%, imprecision of 2%, and calibrator uncertainty
f 1%. As before we used SAS® 9.1.3 [19] to analyze the data
ased on model (4) and calculating shelf life and its error as
escribed in (5).

Errors of estimated shelf life are shown in Table 6 and graph-
cally in Fig. 3. For three replicates, error of shelf life is reduced
y only 0.3% when testing two lots instead of one lot, but
his reduction is doubled (0.6%) when three of lots are tested.
ncreasing the number of replicates is also important for reducing
rror and monitoring precision of the method during the course
f the study [20]. The biggest gain is achieved when this number
s increased from two to three replicates. Trends of error change
re consistent for different lots and replicates numbers (Fig. 3).
et consider that accelerated stability testing at three elevated

emperatures is going to be used to validate the requirement that
roduct X has a shelf life of 365 days. Based on the simulated

ata and statistical calculations the estimated shelf life from this
est will have an error of 4.1% when three lots of the product
re tested in three randomly selected replicates for time point at
ach temperature. This converts to ±38.5 days indicating that

ig. 3. Error of shelf life for different replicates and lots in accelerated stability
ests.
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he point estimate of shelf life from the accelerated stability test
hould be at least 365 + 38.5 = 403.5 days for product X to meet
he 1 year requirement.

. Discussion

The requirement that shelf life be reported as the lower confi-
ence limit of the estimate signifies the importance of reducing
he amount of error and the width of the confidence interval in
tability studies. Our models and simulations indicate that a 1
ear prediction of shelf life will have approximately 1 month of
rror. This certainly depends on the specifics of the product, test-
ng protocol, and other related issues. In this paper we grouped
hem in terms of uncertainty of measurement and experimental
esign. Degradation model is a part of this general equation as
ell. However, we have considered only the simple exponential
odel since the majority of biopharmaceutical products exhibit

ome sort of approximation to the first order kinetics.
Uncertainty of measurement is strongly associated with error.

ontrolling the variability of the testing material and using an
nalytical procedure that delivers accurate results with high
egree of precision would considerably reduce the uncertainty
f measurement and consequently, the amount of error and the
idth of the confidence interval. The amount of error is also

ssociated with experimental design. Experimental design is
planning of stability tests in time and space to make possi-

le the statistical analysis of the data based on the degradation
odel and to accommodate the uncertainty associated with the

easurement. Number of lots and replicates are two important

lements of the experimental design in stability tests. Actually,
rror can be reduced below the level of uncertainty of mea-
urement by increasing the number of replicates and lots. The

[

[

[
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ecision on the number of lots and replicates will be a balancing
ct between the uncertainty of the measurement, experimental
esign, required tolerance on the final estimates and practical
ssues of conducting the tests.

eferences

[1] Food and Drug Administration, Guidelines for Submitting Documenta-
tion for the Stability of Human Drugs and Biologics, Center for Drug and
Biologics, Rockville, Maryland, 1987.

[2] International Conference on Harmonization. Q1E. Evaluation for stability
data, 2003, Rockville, Maryland.

[3] J. Shao, S. Chow, Biometrics 50 (1994) 753–763.
[4] W.Q. Meeker, L.A. Escobar, C.J. Lu, Technometrics 40 (1998) 89–99.
[5] T.D. Lin, C.W. Chen, J. Biopharm. Stat. 13 (2003) 334–354.
[6] M. Boulanger, L.A. Escobar, Technometrics 36 (1994) 260–272.
[7] A.S. Hedayat, X. Yan, L. Lin, J. Biopharm. Stat. 16 (2006) 35–39.
[8] Y. Zhang, W.Q. Meeker, Technometrics 48 (2006) 49–60.
[9] S. Chow, J. Shao, Biometrics 47 (1991) 1071–1079.
10] R.T. Magari, J. Pharm. Sci. 91 (2002) 893–899.
11] I.T. Some, P. Bogaerts, R. Hanus, M. Hanocq, J. Dubois, Int. J. Pharm. 184

(1999) 165–172.
12] International Organization for Standardization, Guide to the Expression of

Uncertainty in Measurements, ISO, Geneva, Switzerland, 1995.
13] J. Kristiansen, J.M. Christensen, Ann. Clin. Biochem. 35 (1998) 371–

379.
14] J. Kristiansen, Clin. Chem. Lab. Med. 30 (2001) 920–931.
15] J.S. Krouwer, Clin. Chem. 49 (2003) 1818–1821.
16] J. Kristiansen, Clin. Chem. 49 (2003) 1822–1829.
17] A. Konnert, C. Berding, S. Arends, Clin. Chem. Lab. Med. 44 (2006)

1175–1182.

18] P. Billingsley, Probability and Measure, John Wiley & Sons Inc., New York,

NY, 1986.
19] SAS Institute, Stat User’s Guide, Version 9.1.3 Service Pack 2, SAS Insti-

tute, Cary, NC, 2003.
20] C. Agut, STP Pharma Pratiques 14 (2004) 311–324.


	Uncertainty of measurement and error in stability studies
	Introduction
	Uncertainty of measurement
	Model
	Performance data

	Degradation model
	Experimental design
	Real time stability test
	Accelerated stability test

	Discussion
	References


